MP2I - 2024/2025 Informatique - TD n°11 - Piles et files 1/5

Exercice 1

TD n°11 - Corrigé

Applications des piles

Dans cet exercice on suppose écrite en C un type structure pile, représentant une pile d’entiers. On dispose
de fonctions pilex pile_vide(), bool est_vide_pile(pilex p) int depile(pilex p), void empile(pilex p, int e) et
int longueur(pilex p) qui fonctionnent avec effets de bord.

1. Ecrire une fonction qui échange les deux premiers éléments d’'une pile.

void echange(pilex p){

}

int a = depile(p);
int b = depile(p);
empile(a, p);
empile(b,p);

2. Ecrire une fonction qui dépile et affiche le n-iéme élément. A quoi faut-il penser en terme de programmation
défensive ?

void nieme(pilex p, int n){

}

int 1 = 1;

pilex pbis = pile_vide();

while (i<n){
assert(not est_vide_pile(p)); //0n vérifie qu'il y a bien plus de i éléments dans la pile
empile(pbis, depile(p));
i+=1;

}

//0n a enlevé n-1 éléments a la pile, donc on affiche le prochain

printf("%sd\n", depile(p));

//Maintenant il faut rempiler tout les éléments qui étaient avant le nieme
while (not est_vide_pile(pbis)){

empile(p, depile(pbis));
}

3. Ecrire une fonction qui prend en entrée un pile et modifie la pile pour que le premier élément devienne le
dernier, mais les autres restent dans le méme ordre.

void premierdernier(pilex p){

}

pilex pbis = pile_vide();
while (not est_vide_pile(p)){
int el = depile(p)
empile(pbis, el);
}
//0n a retiré tous les éléments de la pile. el vaut la valeur du dernier élément
//0n rempile donc tous les éléments, sauf el (qui est premier dans pbis)
depile(pbis);
while (not est_vide_pile(pbis)){
empile(p, depile(pbis));
}
//Enfin on rempile el
empile(p, el);

4. Ecrire une fonction qui prend en entrée une pile et renverse l'ordre des éléments dans la pile
Ici on a & nouveau besoin de vider toute la pile, mais pas dans une pile, qui ne permet pas d’accéder librement
aux éléments. On va plutot utiliser un tableau.

void renverse(pilex p){

int 1 = longueur(p);
intx sto = malloc(l*sizeof(int));
int i=0;
while (not est_vide_pile(p)){
sto[i] = depile(p);
i+=1;
}
i-=1; //i est désormais l'indice de la derniere case du tableau
//0n a retiré tous les éléments de la pile. On va les rajouter mais a l'envers
while (i!=-1){

MP2I - 2024/2025 Informatique - TD n°11 - Piles et files 2/5

empile(p, tab[i]);
}

5. Ecrire une fonction qui prend en entrée une pile et la découpe en deux. Une des deux parties sera renvoyée
dans une autre pile et 'autre sera mise dans la pile d’origine (pour faire cela il faut un pointeur)

Pour découper en deux le plus simple est de calculer la longueur n et dépiler les n/2 premiers éléments dans
une autre pile. Pour préserver l'ordre, on retourne celle-ci avec la fonction de la question précédente.

void coupe(pilex p){
pilex pbis = pile_vide();
while (not est_vide_pile(p)){
empile(pbis, depile(p));
}
renverse(pbis);

}

6. Ecrire une fonction qui prend en entrée deux piles et les "mélange" aléatoirement. On suppose qu’on dispose
d’une fonction int zero_ou_un() qui renvoie aléatoirement 0 ou 1 avec probabilités égales.

Tant que les deux piles ne sont pas vides, on tire au hasard dans laquelle des deux on dépile.

void melange(pilex pl, pilex p2){

pilex pmelange = pile_vide();

while (not est_vide_pile(pl) && not est_vide_pile(p2)){
int tire = zero_ou_un();
if (tire == 1){empile(pmelange, depile(pl);}
else {empile(pmelange, depile(p2);}

}

//0n s'occupe de ce qui reste

while (not est_vide_pile(pl)){
empile(pmelange, depile(pl);

}

while (not est_vide_pile(p2)){
empile(pmelange, depile(p2);

}

Exercice 2 Nombres de Hamming et file

Les nombres de Hamming sont les nombres de la forme 203b5¢ pour a, b, c entiers naturels quelconques. Les premiers
entiers de Hamming sont 1,2,3,4,5,6,6,9,10,12,15,16,18,20,...

Le but de cet exercice est de générer la liste des n premiers nombres de Hamming. L’apporche naive consiste a
parcourir les entiers en vérifiant s’ils sont des nombres de Hamming, jusqu’a en avoir trouvé n.

1. Ecrire une fonction est_hamming : int->bool qui vérifie siun entier est un nombre de Hamming. On doit vérifier
si les facteurs premiers de e sont uniquement 2,3 et 5. On divise donc e par ces nombres tant que possible et
on vérifie si le résultat est bien 1.

let est_hamming e =
let m = ref e in
while 'm mod 2 = 0 do m:=!'m/2 done;
while 'm mod 3 = 0 do m:=!m/3 done;
while 'm mod 5 = 0 do m:=!m/5 done;
if !'m = 1 then true
else false;;

2. Ecrire une fonction hamming naif : int->int list qui prend en entrée n est renvoie la liste des n premiers
nombres de Hamming.

let hamming_naif n =
let rec aux n m = match n with (xn est le nombre de nombres de Hamming restants vdash a
trouver. m est le candidat actuelx)
10 -> []
|- -> if est_hamming m then m::aux (n-1) (m+l) (*Si on a trouvé un nombre de hamming,
il en reste n-1 vdéshuaer et le candidat devient m+1x)

else aux n (m+l) (*xSinon n ne change pas et le candidat devient m+1x)
in aux n 1;;

MP2I - 2024/2025 Informatique - TD n°11 - Piles et files 3/5

Si cette approche fonctionne bien pour les premiers termes, plus n grandit et plus les nombres de Hamming sont
éloignés les uns des autres (par exemple le 1999e est 8 100 000 000 et le 2000e 8 153 726 976). 11 devient donc trop
cotiteux d’explorer tous les entiers pour trouver les nombres de Hamming.

On va plutot générer les nombres de Hamming a partir d’autres nombres de Hamming. On utilise pour ce faire
trois files f3, f3 et f5, qui initialement contiennent le nombre 1 et on leur applique I’algorithme suivant, jusqu’a avoir
affiché n valeurs :

e on détermine le plus petit élément entre les trois tétes de files, noté &, et on I'affiche.
e on retire £ des files ou il est présent.

¢ on enfile sur la file f5 'entier 2k, sur f3 'entier 3% et sur f5 I'entier 5k.

Cet algorithme repose sur le fait que tout nombre de Hamming est le produit par 2,3 ou 5 d’'un autre nombre de
Hamming plus petit.

Pour I'implémentation on utilisera le module Queue de Ocaml, qui propose une implémentation mutable de file. Les
primitives ont les noms suivants (en anglais), le type 'a t désigne une file :

B Queue.create : unit -> 'a t qui crée une file vide

® Queue.push : 'a -> 'a t -> unit qui ajoute un élément

® Queue.pop : 'a t -> 'a quiretire et renvoie I’élément le plus ancien

m Queue.peek : 'a t -> 'aquirenvoie sans retire I’élément le plus ancien

Les fonctions peek et pop lévent ’'exception Empty si la file est vide.

3. Traduire 'algorithme en Ocaml.

let hamming n =
let f2 = Queue.create() and f3= Queue.create() and f5 = Queue.create() in
Queue.push 1 f2 ; Queue.push 1 f3 ; Queue.push 1 f5 ;
for i =1 to n do
(x0n regarde les 3 tétes et on comparex)
let x2 = Queue.peek f2 and x3 = Queue.peek f3 and x5 = Queue.peek f5 in
let x = min x2 (min x3 x5) in

(xAffichagex)
print_int x ; print_char ' ' ;

(xx peut étre dans plusieurs files vdéshfaisx)
if x = x2 then (let _ = Queue.pop f2 in ());
if x = x3 then (let _ = Queue.pop f3 in ());
if x = x5 then (let _ = Queue.pop f5 in ());

(x0n ajoute les nouveaux élémentsx)
Queue.push (2*x) f2 ; Queue.push (3%x) f3 ; Queue.push (5*x) f5 ;
done ;;

4. (*) L'inconvénient de la démarche précédente est que le méme nombre peut se retrouver dans plusieurs des
trois files. Modifier votre fonction pour que cela ne soit plus le cas.

Si x est multiple de 3 et 5 alors il se retrouvera dans f3 et f5. On peut remarquer qu’il se retrouvera d’abord
dans f5 car x/5 < x/3. Une solution est de n’ajouter un nombre a f3 que s’il n’est pas multiple de 5. De la méme
maniére, on n’ajoutera un nombre a fo que si ce n’est ni un multiple de 3, ni un multiple de 5.

Dans cette nouvelle version, f; sert a générer les puissances de 2, f3 sert a générer les nombres de la forme
293% avec b # 0 et f5 sert a générer les nombres de la forme 2%3°5¢ avec ¢ # 0.

let hamming_bis n =
let f2 = Queue.create() and f3= Queue.create() and f5 = Queue.create() in
Queue.push 1 f2 ; Queue.push 1 f3 ; Queue.push 1 f5 ;
for i =1 to n do
(x0n regarde les 3 tétes et on comparex)
let x2 = Queue.peek f2 and x3 = Queue.peek f3 and x5 = Queue.peek f5 in
let x = min x2 (min x3 x5) in

(*Affichagex)
print_int x ; print_char ' ' ;

(xx peut étre dans plusieurs files vdéahfaisx)
if x = x2 then (let _ = Queue.pop f2 in ());
if x = x3 then (let _ = Queue.pop f3 in ());
if x = x5 then (let _ = Queue.pop f5 in ());

MP2I - 2024/2025 Informatique - TD n°11 - Piles et files 4/5

(x0n ajoute les nouveaux élémentsx)
Queue.push (5%x) f5 ;
if x mod 5 <> 0 then begin
Queue.push (3xx) f3;
if x mod 3 <> 0 then Queue.push (2xx) f2
end;
done ;;

Exercice 3 Permutations et piles

Une permutation de [|1,n|] est une maniére de réarranger les entiers de 1 a n. Par exemple pourn =5,(124 5 3)
est une permutation. (1 2 3 4 5) en est une aussi.

on peut aussi le voir comme les 5-uplets dont les éléments sont exactement ceux de [|1, n|], sans répétitions.

On dit qu'une permutation (a1 as ... a,) de [|1, n|] peut étre engendrée par une pile lorsqu’il est possible, & partir de
la permutation (1 2 ... n) et d'une pile (initialement vide), d’afficher la séquence de sortie (a1 as ... @,) en utilisant
uniquement les opérations suivantes :

m empiler ’élément suivant dans la permutation d’entrée.

m dépiler un élément de la pile et ’afficher

Par exemple, si E et D désignent respectivement les deux opérations permises, la permutation (2 3 1) est engendrée
par la suite d’opérations EEDEDD.

1. Parmi les permutations suivantes, lesquelles peuvent étre engendrées par une pile ?
312),(3421),(4537216),(35768492101)

(31 2) ne peut pas étre engendrée, pour afficher 3 en premier il faut empiler 1, 2 et 3 mais alors 1 est coincé en
dessous de 2 dans la pile.

EEEDEDDD permet d’engendrer (3 4 2 1).
(453721 6) ne peut pas étre engendrée.
EEEDEEDEEDDEDDEDDEDD permet d’engendrer (357 68492 10 1).

2. Montrer que s'il existe un triplet (i, j, %) € [|1,n]]® telquei < j < k et a; < ap < a;, alors la permutation (a;
ag ... a,) ne peut pas étre engendrée par une pile.
Supposons que (a1 ag ... a,) puisse étre engendré par une pile.
Comme les a; sont donnés en entrée selon 'ordre de leurs valeurs, a; est empilé avant a; qui est empilé avant
a;.
Donc au moment de dépiler a;, a; et a; sont dans la pile et a; est plus haut dans l'ordre de priorité que a; (il
est plus proche de la sortie si on représente séquentiellement). Pour pouvoir dépiler a;, il est nécessaire que
ay, soit dépilé avant, ce qui contredit que j < k.

3. Ecrire une fonction Caml est_engendrable : int list -> bool déterminant si une permutation peut étre en-
gendrée par une pile. Dans le cas d’une réponse positive, la fonction affichera la suite d’opérations permettant
de la produire. Les permutations seront représentées par le type int list.

Nous allons utiliser un accumulateur qui va mémoriser la valeur i du plus grand entier a avoir été empilé.
Lorsqu'’il va falloir dépiler I’entier j, nous allons commencer par empiler les entiers compris entre i + 1 et j (si
1 < j) puis dépiler j s’il se trouve au sommet de la pile. Dans le cas contraire, c’est que la permutation n’est
pas engendrable.

let engendrable =
let p = creer() in
let rec aux i = function
| [T -> true
| j::q -> for k = i+1 to j do empile k p ; print_char 'E' ; done ;
match (depile p) with
| k when k=j -> print_char 'D' ; aux (max i j) q
| - -> false
in aux 0 ;;

4. Montrer enfin que toute permutation peut étre engendrée a I'aide de deux piles, et rédiger la fonction Caml
correspondante.
La fonction précédente ne permet pas d’engendrer une permutation lorsqu’au moment de dépiler j, ce dernier
ne se trouve pas au sommet de la pile. Dans ce cas, il suffit de stocker temporairement dans une seconde pile
les éléments situés au dessus de lui, puis de les faire réintégrer la pile initiale une fois j dépilé.

MP2I - 2024/2025 Informatique - TD n°11 - Piles et files 5/5

let transfert q p
let rec aux () empile (depile q) p ; print_char 'd' ; aux () in
try aux () with Empty -> () ;;

let rec cherche j p q = match depile p with
| k when k = j -> print_char 'D' ; transfert q p
| k -> empile k q ; print_char 'e' ; cherche j p q ;;
let génération =
let p = creer() and q = creer() in
let rec aux i = function
| [1 -> ()
| j::r -> for k = i+l to j do empile k p ; print_char 'E' ; done ;
cherche j p q ;
aux (max i j) r
in aux 0 ;;

La fonction cherche empile dans q les éléments de p qui se trouvent au dessus de j ; une fois trouvé, les éléments
de q sont de nouveau remis dans p.

Ces opérations d’empilement et de dépilement accessoires dans la pile q sont codées par les lettres e et d.

